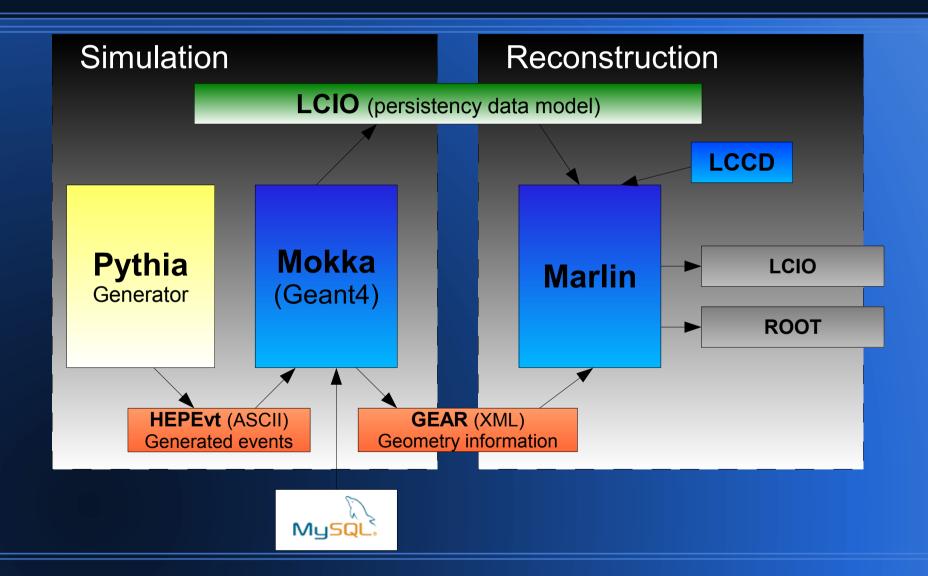
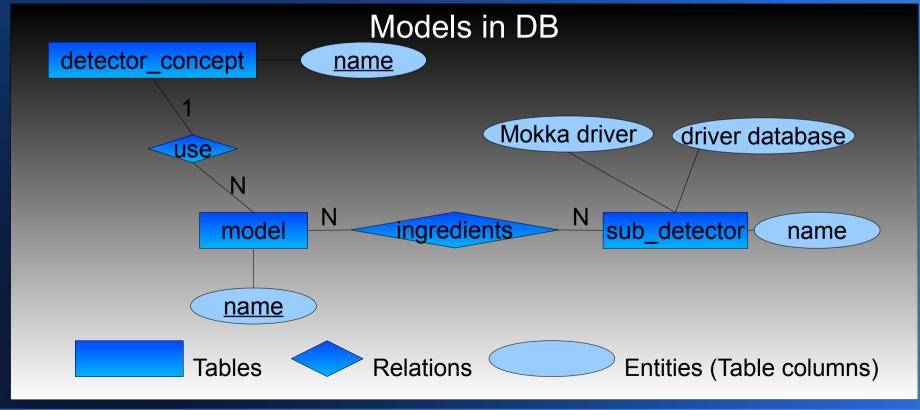
ILC Software Framework for SBelle

Z. Drásal^{*}, K. Prothmann⁺


with special thanks to: C. Kiesling⁺, A. Raspereza⁺

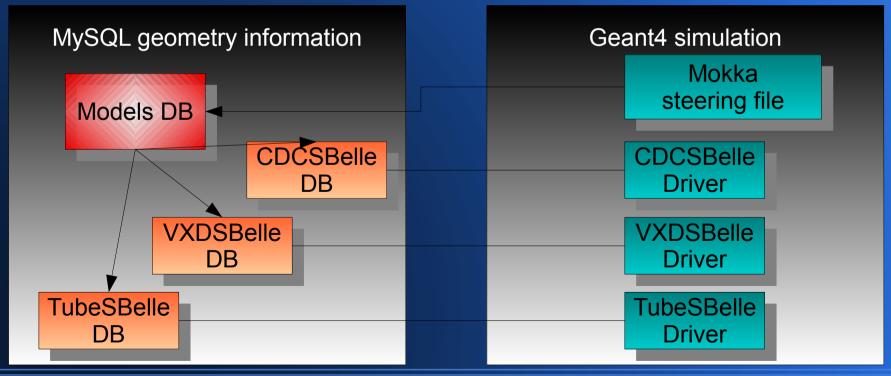
* Charles University Prague * MPI Munich

ILC Software Framework – Summary

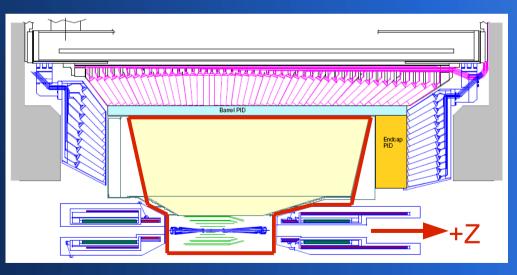

- Mokka: Geant 4 based, full simulation tool using a realistic detector geometry (accessible via a MySQL database) → output in *ascii* or *lcio* format
- *LCCD*: Conditions data framework for the ILC
- *LCIO*: Linear Collider I/O persistency framework, which defines a data model for ILC; concrete data format implementation Serial Input/Output (SIO) → output in *.*slcio*
 - API: in Fortran77, C++ and Java
- GEAR: Geometry description toolkit for ILC analysis and reconstruction software → output in *.xml file
- *Marlin*: ILC Modular C++ Analysis & Reconstruction tool that enables modular approach (using so-called processors) to development of analysis and reconstruction code based on LCIO
- Marlin Reco: Marlin based toolkit providing reconstruction algorithms for data analysis

ILC Software Framework – Scheme

Mokka – Database Layout

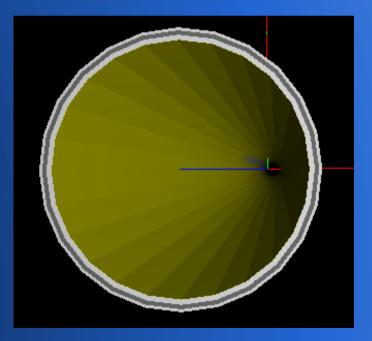

- *Mokka DB*: All geometry information is held in a central database (or its local copy)
 - For each detector concept (BelleExp) different models are defined: Belle, SuperBelle, Super Belle Upgr; each model consists of individual ingredients: PXL, SVD, CDC ...

Mokka – Database & Drivers


• Mokka geometry:

- Geometry drivers (Geant4 DetectorConstruction class) read the information from corresponding MySQL databases
- Simulation controlled by Mokka steering file; output LCIO file + geometry *.xml file

Mokka – BelleExp Geometry

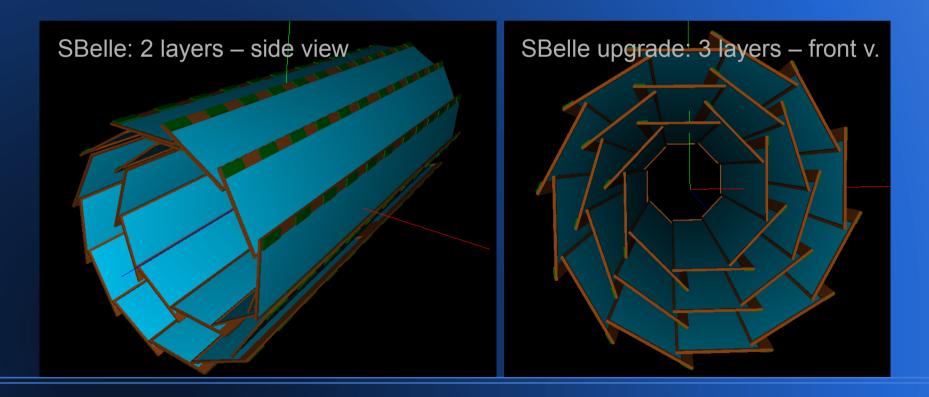

- *BelleExp geometry*: currently, only tracker implemented (will be officially released withing Mokka framework)
 - TubeBelle, TubeSBelle geometry driver of a beam pipe
 - *VXDBelle*, *VXDSBelle* geometry driver of a vertex detector (pixel and strip detectors together)
 - CDCBelle, CDCSBelle geometry driver of a central drift chamber
 - Sensitives:
 - *TRKSD00* (Belle), *VXDSens* (SBelle)
 - *TPCSD02* (both)
 - Hits:
 - TRKHit (Belle), VXDHit (SBelle)
 - Mag. field :
 - Field00 (both) 1.5 T in z

Mokka – Beam Pipe Geometry

- *TubeSBelle:* geometry driver that describes a beam pipe for SBelle & SBelle upgrade
 - Cylindrical, onion-like structure, with option to be rotated around Y axis (by 22 mrad):
 - "vacuum"
 - inner gold layer (shielding against soft SR): 10 μ m
 - inner beryllium wall: 0.6 mm
 - cooling gap (filled with paraffin): 0.5 mm
 - outer beryllium wall: 0.35

	R _{min} [mm]	R_{max} [mm]
SuperBelle	14.99	16.45
SuperBelleUpgr	8.54	10.00

Mokka – VXD Geometry – Pixel Ladders


• *VXDSBelle*: realistic geometry driver for SBelle & SBelle upgrade – VXD

- <u>Description</u>: 2 layers (3 layers for upgrade) \rightarrow ladders \rightarrow Si sensors (50 μ m) + rims (450 μ m) + support (400 μ m) + 12 switchers

	R [mm]	# ladders	support	
Pxl layer 0	13.00	8	no	
Pxl layer 1	18.00	10	no	
Pxl layer 2	22.00	12	yes	
Layer 1: ladder – frontside	iew	Layer 2: la	adder – backside	e view

Mokka – VXD Geometry – Pixel Layers

- *VXDSBelle*: detail of pixel part for SBelle & SBelle upgrade
 - Layers with wind-mill structure
 - Option: rotate pixel layers together with beam pipe (by 22 mrad)

Mokka – VXD Geometry – Strip Layers

- *VXDSBelle*: driver used for strip part of VXD of SBelle & SBelle upgrade as well
 - <u>Description</u>: 4 layers in barrel part + 2 layers in "forward" region (stagger-like structure) \rightarrow ladders \rightarrow Si sensors (active part 300 μ m) + Si rims (pasive part 300 μ m)

	R [mm]	# ladders	# DSSDs	SBelle: strip layers – front view
Strip layer 31 – barrel	45.15	6	3	
Strip layer 32 – barrel	48.15	6	3	
Strip layer 41 – barrel	70.15	6	5	
Strip layer 42 – barrel	73.15	6	5	
Strip layer 51 – barrel	100.15	12	5	
Strip layer 52 – barrel-slanted	89.15	12	1	
Strip layer 53 – barrel	103.15	12	5	
Strip layer 54 – barrel-slanted	92.15	12	1	
Strip layer 61 – barrel	137.15	12	6	
Strip layer 62 – barrel-slanted	117.65	12	2	
Strip layer 63 – barrel	140.15	12	6	
Strip layer 64 – barrel-slanted	120.65	12	2	

17th-19th March 2009

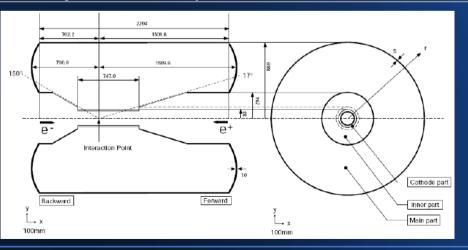
Mokka – CDC Geometry

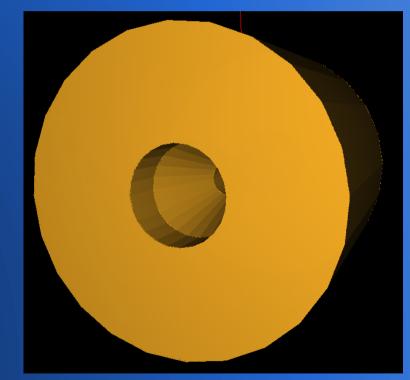
• **CDCSBelle:** realistic geometry driver (by P. Vanhoefer) describing central drift chamber

– Aluminium cylinder with cone-shaped inner parts filled with gas He/C_2H_6 (50:50)

361 mm

150 mm

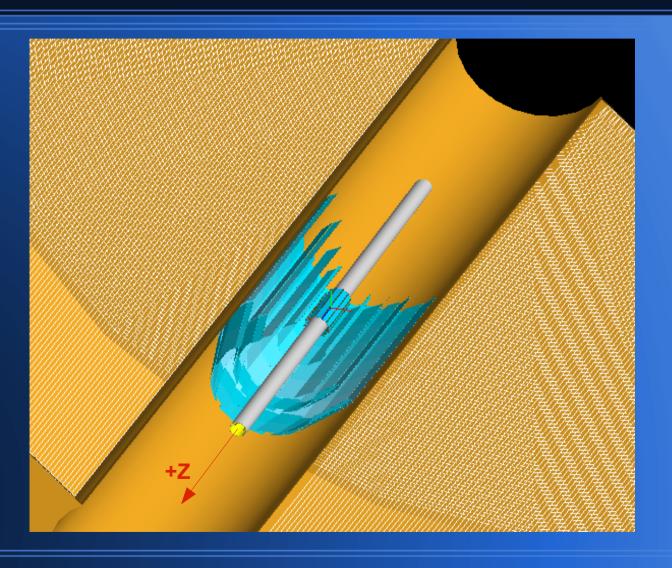

1150 mm


172 mm

1120 mm

58

Radius – inner boundary Radius – inner-middle boundary Radius – outer boundary Radius – innermost sens. wire Radius – outermost sens. wire Number of sensitive layers



SBelle: CDC - front view

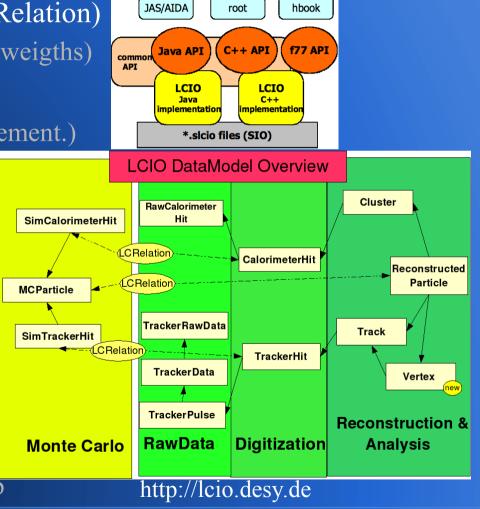
17th-19th March 2009

Mokka – Tracker Geometry

- Implemented tracker:
 - Pixel layers (VXD)
 - Strip layers (VXD)
 - CDC

Gear – Geometry Description

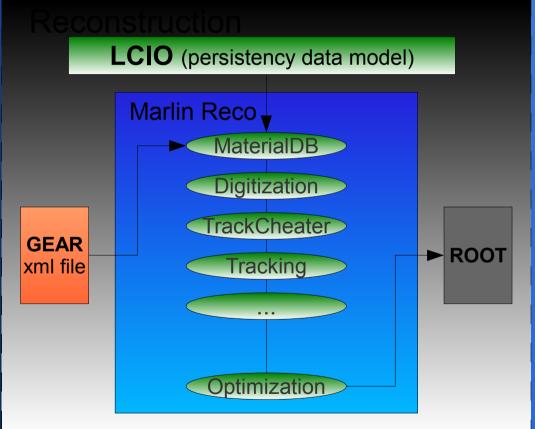
- Gear: Geometry API for reconstruction and analysis \rightarrow input/output in xml file
 - GearMgr abstract manager class which returns (set/get) all subdetector parameter classes. <gear>
 - BField
 - Gear parameters (general)
 - VXD parameters
 - *CDC parameters*


۲

```
<global detectorName="TrkSBelle CPS1000 SUP10"/>
Gear XML file automatically created with GearXML::createXMLFile ....
<BField type="ConstantBField" x="0.00000000e+00" y="0.00000000e+00" z="1.500000000e+00"/>
-<detectors>
-<detector name="TPC" geartype="TPCParameters">
   <driftVelocityvalue="0.00000000e+00"/>
   <maxDriftLength value="1.102000000e+03"/>
   <readoutFrequencyvalue="0.00000000e+00"/>
   <PadRowLayout2D type="FixedPadSizeDiskLayout" rMin="1.720000000e+02" rMax="1.120000000e+03" padHeight="1.634482759e+01"
   padWidth="4.903448276e+00" maxRow="58" padGap="0.00000000e+00"/>
   <parameter name="CDCGasProperties RadLen" type="double" value="8.841062425e+05"/>
   <parameter name="CDCGasProperties dEdx" type="double" value="1.465886091e-07"/>
   <parameter name="CDCWallProperties RadLen" type="double" value="8.896325058e+01"/>
   <parameter name="CDCWallProperties dEdx" type="double" value="4.328945801e-04"/>
   <parameter name="cdcInnerRadius" type="double" value="1.50000000e+02"/>
   <parameter name="cdcInnerWallThickness" type="double" value="5.000000000e+00"/>
   <parameter name="cdcIonPotential" type="double" value="4.80000000e-08"/>
   <parameter name="cdcOuterRadius" type="double" value="1.150000000e+03"/>
   <parameter name="cdcOuterWallThickness" type="double" value="5.000000000e+00"/>
  </detector>
-<detector name="VXD" geartype="VXDParameters">
   <vxdType technology="CMOS"/>
   <shell halfLength="0.000000000e+00" gap="0.00000000e+00" innerRadius="0.00000000e+00" outerRadius="0.000000000e+00"
   radLength="0.00000000e+00"/>
  -<lavers>
   -<layer nLadders="10" phi0="9.00000000e+01">
       ladder distance="1.800000000e+01" thickness="5.000000000e-02" width="1.250000000e+01" length="9.800000000e+01"
      offset="-2.20000000e+00" radLength="9.366078130e+01"/>
      <sensitive distance="1.80000000e+01" thickness="5.00000000e-02" width="1.250000000e+01" length="9.80000000e+01"</pre>
      offset="-2.20000000e+00" radLength="9.366078130e+01"/>
     </laver>
    -<layer nLadders="12" phi0="9.00000000e+01">
       adder distance="2.200000000e+01" thickness="5.00000000e-02" width="1.250000000e+01" length="1.174000000e+02"
      offset="-2.53000000e+00" radLength="9.366078130e+01"/>
       <sensitive distance="2.200000000e+01" thickness="5.00000000e-02" width="1.250000000e+01" length="1.174000000e+02"</pre>
      offset="-2.53000000e+00" radLength="9.366078130e+01"/>
     </laver>
```

http://ilcsoft.desy.de/portal/software_packages/gear

LCIO – Data Format


- Bidirectional relations between objects (LCRelation)
 - one to one; one to many, many to many (with weigths)
- API bindings to various languages
 - C++ & Java & Fortran (interface to C++ implement.)
- LCEvent container for all the data related to this event; LCEvent holds:
 - named collections (LCCollection)
 - data objects (LCObject)
- LCRunHeader run related information
- SIO first concrete implementation of LCIO
 - serial data format (machine independent)
 - allows to store, retrieve pointers or references within one record; data compression using zlib

Marlin & MarlinReco – Scheme

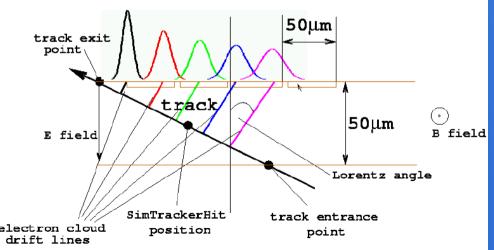
- *Marlin&MarlinReco:* modular C++ software framework (adapted to SBelle experiment)
 - Controlled by an xml steering file

Optimisation studies - Marlin package steering file
Uptimisation studies - Nartin package steering rite

>
- <marlin></marlin>
- </td
Execute following processors жижжижие высклатите в second
>
- <execute></execute>
processor name="MyMaterialDB"/
<pre><prccessor name="MyVTXDigitizer"></prccessor></pre>
processor name="MyCDCDigiProcessor"/
processor name="MyCurlKillerProcessor"/ processor name="MyTrackCheater"/
processor name="hytrackingProcessor"/ processor name="MyLEPTrackingProcessor"/
processor name="MySiliconTracking"/
processor name="MyFullLDCTracking"/
processor name="MyVertexViewer"/
processor name="MyFullTrackPerformance"/
- <global></global>
- </td
LCIO input files
>
<pre><pre><pre><pre>content</pre> </pre></pre></pre>
/Output_CPS1000_20deg.slcio
- </td

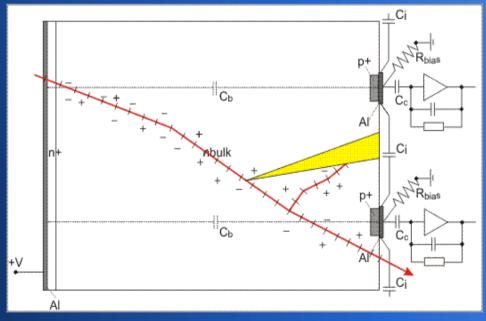
GEAR input files
>
<pre><pre><pre><pre>content</pre> </pre> <pre>//data3/geometry</pre></pre></pre>
/Geometry CPS1000 20deg.xml
- </td
*

http://ilcsoft.desy.de/portal/software_packages/marlin

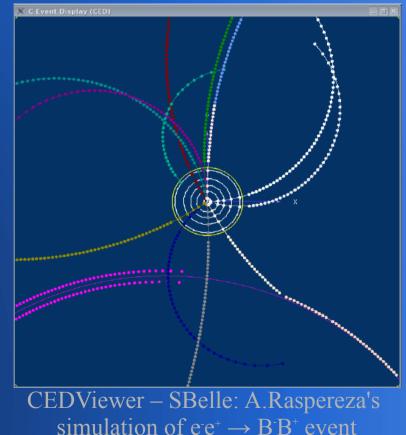

Marlin – Material DB

• *MaterialDB*: material database processor

- based on info saved in Gear xml file provides necessary information to Kalman filter in Brahms tracking code (written in Fortran 77) – used to correct tracks to MS effects and particle energy losses
- currently tracker geometry implemented (beam pipe, SVD, CDC)


Marlin – PXD Digitizer

- *VTXDigitizer*: MarlinReco pixel digitizer adapted A. Raspereza's VTXDigitizer
 - <u>Input:</u> LCIO SimTrackerHits → <u>Output:</u> LCIO TrackerHits
 - <u>Processes:</u>
 - Global to local ref. system transformation
 - Ionization points generated: energy loss fluctuation added \rightarrow e-h pairs along the path created
 - Signal points generated: e⁻ drift performed → e⁻ Lorentz shift in mag. field of 1.5 T calculated
 → e⁻ diffusion calculated
 - Digits produced: pixels with signal bigger than threshold (2 x noise) found
 - noise for pixels set = 100 e
 - noise for strips set = 1200 e
 - Local to global ref. system transformation
 - Hits produced + resolution calculated
 - Background generated


Marlin – SVD Digitizer

- SiStripDigi: MarlinReco strip digitizer almost finished
 - <u>Input:</u> LCIO SimTrackerHits → <u>Output:</u> LCIO TrackerHits
 - Geometry: Mokka hits transformation from global to local reference system
 - <u>Physical processes:</u>
 - Generation of e-h pairs (E_{eh} =3.65 eV)
 - Drift of e-h pairs in electric field
 - Diffusion of e-h due to multiple collisions
 - Lorentz shift of e-h pairs in magnetic field
 - Mutual microstrip cross talks (wrt. AC or DC)
 - Noise: sensor, electronics ...
 - <u>Clustering:</u> (based on COG algorithm)
 - Cluster finding (seed strips + their neighbours)
 - Cluster transformation back to global ref. s.

Marlin – Tracking & Pattern Recognition

- Chain of Tracking processors (for more details see http://ilcsoft.desy.de/portal):
 - LEPTracking \rightarrow SiliconTracking \rightarrow FullLDCTracking
 - TrackCheater tracking based on MC information
- Pattern recognition in CDC performed: inward search for continuous hit patterns compatible with helix hypothesis (DELPHI code)
- Fit CDC tracks with Kalman filter
- Perform separate pattern recognition in SVD
- Combine SVD tracks and CDC tracks
- Extrapolate track back to the PXD area
- Assign hits on backward helical road
- Refit track after inclusion of new hits using Kalman filter

Summary

- Mokka
 - Geometry drivers for beam pipe, PXD, SVD, CDC i.e. the whole tracker written
 - MySQL database tables prepared
- Gear
 - A lot of data saved using generic vectors (int, double ...); better solution to redefine particular parameter classes for SBelle purposes
- LCIO perfectly ok
- Marlin&MarlinReco
 - MarlinDB: adapted
 - Digitizers: for PXD adapted, for SVD under development, for CDC standard used
 - Tracking code: adapted & functional (see presentation in PXL session)
 - Other packages (vertexing, ...): should be compatible with reconstructed data